ELSA (Autoencoder)
Description
The ELSA (Efficient Latent Sparse Autoencoder) policy implements a scalable shallow linear autoencoder designed for implicit feedback collaborative filtering. It learns item-item relationships by reconstructing user interaction vectors. To improve scalability over models like EASE, it uses a factorized hidden layer structure (low-rank plus sparse).
Policy Type: elsa
Supports: embedding_policy
, scoring_policy
Configuration Example
embedding_policy_elsa.yaml
policy_configs:
embedding_policy: # Or scoring_policy
policy_type: elsa
# Training Hyperparameters
batch_size: 512 # Samples per training batch
n_epochs: 20 # Number of training epochs
lr: 0.1 # Learning rate
# Model Hyperparameters
factors: 10 # Rank (number of latent factors) for the low-rank part
Reference
- Jesrani, V., et al. (2022). Scalable Linear Shallow Autoencoder for Collaborative Filtering. WSDM.