Auto-Tune (Special)
Description
The Auto-Tune policy provides automated model selection and hyperparameter optimization. When configured, it evaluates multiple underlying policy types (specified in the policies
list) and/or searches for optimal hyperparameters for a given policy using techniques like cross-validation. It selects the best configuration based on a specified performance metric (e.g., NDCG).
Policy Type: auto-tune
Supports: embedding_policy
, scoring_policy
Configuration Example
scoring_policy_auto_tune.yaml
policy_configs:
scoring_policy: # Or embedding_policy
policy_type: auto-tune
# List the candidate policy types (as strings) to consider
policies:
- "lightgbm"
- "als"
- "bert4rec"
References
- Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization. JMLR.
- Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian Optimization of Machine Learning Algorithms. NeurIPS.